THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 1 15th September 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. For each of the following subsets, determine whether its supremum and infimum exist. If they exist, find their values.
 - (a) $X = \{q^2 | q \in \mathbb{Q}\}.$
 - (b) $X = \{(-1)^n / n \mid n \in \mathbb{N}\}.$
 - (c) $X = \{x \in \mathbb{R} | 4x x^2 > 3\}.$
 - (d) Let $r \in \mathbb{R}$ be arbitrary, $X = \{ |q r| : q \in \mathbb{Q} \}.$
- 2. Show that for a subset A, if $\sup(A)$ exists, then so does $\inf(-A)$. Prove the formula $\inf(-A) = -\sup(A)$.
- 3. For two subsets A, B, define $A B = \{a b | a \in A, b \in B\}$. Show that $\inf(A B) = \inf A \sup B$.
- 4. Let A and B be two nonempty subsets of \mathbb{R} that satisfy the property that, for any pair of $a \in A$ and $b \in B$, $a \leq b$. Prove that $\sup A \leq \inf B$.
- 5. Let T be a bounded subset in \mathbb{R} and $S \subset T$ a nonempty subset, show that $\inf T \leq \inf S \leq \sup S \leq \sup T$.
- 6. Suppose that S is a nonempty subset that contains an upper bound of itself, show that such element is unique and it must be the supremum.
- 7. According to lecture note P.3, it is possible to deduce $\inf\{1/n | n \in \mathbb{N}\} = 0$ from Archimedean property of \mathbb{R} . Prove the converse statement, i.e., assume that we know $\inf\{1/n | n \in \mathbb{N}\} = 0$, without invoking completeness axiom, prove the Archimedean property.
- 8. Given $D \subset \mathbb{R}$, and a function $f : D \to \mathbb{R}$, we denote

$$f(D) = \{ y \in \mathbb{R} | y = f(x) \text{ for some } x \in D \}$$

and

$$\sup_{x \in D} f(x) = \sup f(D).$$

Now suppose $f, g: D \to \mathbb{R}$ are functions on the same domain D.

- (a) If $f(x) \leq g(x)$ for all $x \in D$, show that $\sup_{x \in D} f(x) \leq \sup_{x \in D} g(x)$.
- (b) If $f(x) \leq g(y)$ for all $x, y \in D$, show that $\sup_{x \in D} f(x) \leq \inf_{x \in D} g(x)$.
- (c) Find an example in which the premise of part (a) holds but the conclusion of part (b) does not.
- 9. Let $D = (0, 1) = \{0 < x < 1 | x \in \mathbb{R}\}$, consider the function $h : (0, 1)^2 \to \mathbb{R}$ defined by h(x, y) = 2x + y.
 - (a) For each $x \in D$, compute $f(x) := \sup_{y \in D} h(x, y)$ in terms of x, then find the value $\inf_{x \in D} f(x)$.
 - (b) For each $y \in D$, compute $g(y) := \inf_{x \in D} h(x, y)$ in terms of y, then find the value $\sup_{y \in D} g(y)$.
- 10. Repeat exercise Q7 for the function $h : (0,1)^2 \to \mathbb{R}$, where h(x,y) = 0 for x < y and h(x,y) = 1 for $x \ge y$.
- 11. Prove that for X, Y subsets of \mathbb{R} , and $h: X \times Y \to \mathbb{R}$ be a function, then

$$\sup_{y \in Y} \inf_{x \in X} h(x, y) \le \inf_{x \in X} \sup_{y \in Y} h(x, y).$$

Note that in particular, Q7 and Q8 demonstrate the above inequality can be either an equality or a strict inequality.